On Koopman-von Neumann Waves

نویسنده

  • D. Mauro
چکیده

In this paper we study the classical Hilbert space introduced by Koopman and von Neumann in their operatorial formulation of classical mechanics. In particular we show that the states of this Hilbert space do not spread, differently than what happens in quantum mechanics. The role of the phases associated to these classical ”wave functions” is analyzed in details. In this framework we also perform the analog of the two-slit interference experiment and compare it with the quantum case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

un 2 00 3 On Koopman - von Neumann Waves II

In this paper we continue the study started in [1] on the operatorial formulation of classical mechanics given by Koopman and von Neumann (KvN) in the Thirties. In particular we show that the introduction of the KvN Hilbert space of complex and square integrable " wave functions " requires an enlargement of the set of the observables of ordinary classical mechanics. The possible role and the me...

متن کامل

On Koopman-von Neumann Waves Ii

In this paper we continue the study, started in [1], of the operatorial formulation of classical mechanics given by Koopman and von Neumann (KvN) in the Thirties. In particular we show that the introduction of the KvN Hilbert space of complex and square integrable " wave functions " requires an enlargement of the set of the observables of ordinary classical mechanics. The possible role and the ...

متن کامل

Universal local symmetries and nonsuperposition in classical mechanics.

In the Hilbert space formulation of classical mechanics, pioneered by Koopman and von Neumann, there are potentially more observables than in the standard approach to classical mechanics. In this Letter, we show that actually many of those extra observables are not invariant under a set of universal local symmetries which appear once the Koopman and von Neumann formulation is extended to includ...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001